2017-2018 Undergraduate Catalog 
    
    Nov 23, 2024  
2017-2018 Undergraduate Catalog [Archived]

Automotive Engineering Technology Major


Return to {$returnto_text} Return to: Programs

(71 credits)*

*Includes minimum of fifteen credits of Foundational Studies

Vision

The Automotive Engineering Technology degree program will be a leader in integrating teaching, research, and creative activity in an engaging, challenging, and supportive learning environment preparing productive citizens for Indiana and the world while creating and maintaining a credible presence within the automotive sector of education and industry.

Mission

The mission of the Automotive Engineering Technology (AET) degree program at Indiana State University is to prepare application oriented graduates with the technical and managerial skills necessary to enter globally competitive automotive careers. 

Current automotive technology and design considerations are explored with emphasis on experiential learning opportunities engaging students in engine research, testing, design, and analysis. Students also develop essential managerial knowledge, skills and abilities assuring a comprehensive understanding of automotive operations ranging from retail to industrial applications.

 Guiding Principles (we will):

  • Inculcate high standards for learning, teaching, and inquiry
  • Provide a well-rounded education that integrates professional preparation and study in the arts and sciences with co-curricular involvement
  • Demonstrate integrity through honesty, civility, and fairness
  • Embrace the diversity of individuals, ideas, and expressions
  • Foster personal growth within an environment in which every individual matters
  • Uphold the responsibility of University citizenship
  • Exercise stewardship of our global community

Program Goals:

  • Develop and maintain student enrollment and retention strategies responsive to industry
  • Develop and maintain a modern laboratory equipment suite
  • Develop and maintain a curriculum that addresses both student and industry needs
  • Develop and maintain enriching community engagement and outreach programs and activities
  • Develop and maintain clear, consistent, and concise faculty development strategies to ensure world class automotive faculty

Defining Engineering Technology:

Engineering and engineering technology are recognized as distinct points on the technical occupational spectrum. For example, ABET’s accreditation criteria defines engineering as “the profession in which a knowledge of the mathematical and natural sciences gained by study, experience, and practice is applied with judgment to develop ways to use economically the materials and forces of nature for the benefit of mankind.” Engineering technology is defined as “that part of the technological field that requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities; it lies in the occupational spectrum between the craftsman and the engineer at the end of the spectrum closest to the engineer.” In other words, the engineer is the person who conceives the design, while the engineering technologist is the person who implements it.

The distinction between engineering and engineering technology emanates primarily from differences in their educational programs. Engineering programs are geared toward development of conceptual skills, and consist of a sequence of engineering fundamentals and design courses, built on a foundation of complex mathematics and science courses. Engineering technology programs are oriented toward application, and provide their students introductory mathematics and science courses, and only a qualitative introduction to engineering fundamentals. Thus, engineering programs provide their graduates a breadth and depth of knowledge that allows them to function as designers. Engineering technology programs prepare their graduates to apply others’ designs.

Program Description

The automotive engineering technology (AET) degree program awards a Bachelor of Science (BS) degree to successful students through a four-year curriculum.

The AET program prepares graduates for careers in product research, design and development, manufacturing, and technical sales in the original equipment and aftermarket industries.  Graduates from the program are currently working for original equipment manufacturers such as Toyota, General Motors, Honda, Caterpillar, Cummins, Allison Transmission; aftermarket companies such as Jasper Engines and Competition Cams; service oriented companies such as automotive dealerships and service facilities, GMAC Insurance, State Farm Insurance and Ally Auto; and retail oriented companies such as O’Reilly Auto Parts, AutoZone, Advance, and NAPA. A more complete reference to companies employing graduates may be obtained from the program coordinator.

The Society of Automotive Engineers and the National Institute of Automotive Service Excellence are the lead professional societies used in developing program criteria, guiding program relevance, and making continuous improvement.

Program Educational Objectives: graduates two to three years into their career should have the foundation to:

  1. Apply disciplinary reasoning, critical thinking, and hands-on skills to identify, analyze and solve problems. (Technology).
  2. Communicate effectively in both oral and written form to articulate technical knowledge, ideas, and proposals (Communication)
  3. Consider professional, ethical and social responsibility of engineering technology practices. (Global Responsibility).
  4. Perform effectively, think independently and work collaboratively in a team environment in a membership or leadership role (Management &/or Teamwork).
  5. Actively participate in professional development, including continuous self-improvement and lifelong learning (Lifelong Learning).

Student Outcomes: students at the time of graduation are prepared to demonstrate:

  1. An ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities;
  2. An ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies;
  3. An ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes;
  4. An ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives;
  5. An ability to function effectively as a member or leader on a technical team;
  6. An ability to identify, analyze, and solve broadly-defined engineering technology problems;
  7. An ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature;
  8. An understanding of the need for and an ability to engage in self-directed continuing professional development;
  9. An understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity;
  10. A knowledge of the impact of engineering technology solutions in a societal and global context; and
  11. A commitment to quality, timeliness, and continuous improvement.
  12. Proficiency in the application of computer technologies commonly used in industry, governmental service, and private practice associated with the automotive field.
  13. Proficiency in the application of probability and statistics to the solution of problems related to the automotive field.
  14. An ability to apply modern and effective management skills in identification and investigation of problems, analysis of data, synthesis and implementation of solutions, and operations of facilities related to the automotive field.
  15. A working knowledge of the design, manufacture, and maintenance of major subsystems and technologies associated with the automotive field.

Required Courses:


Electronics and Computer Technology (3 credits):


Manufacturing (3 credits):


Technology Management (3 credits):


Mathematics and Sciences (min 12 credits):


Mathematics:


or Associate of Science Degree Completion


Completion of an associate of science from a regionally accredited institution in an automotive program accredited by the National Automotive Technicians Education Foundation (NATEF). Bachelor of Science in Automotive Engineering Technology, Associate of Science Transfer Option (60 credits) This option is designed as a degree completion articulation for NATEF accredited automotive service programs from regionally accredited institutions. Included in this option is all course work required for satisfying graduation requirements at Indiana State University.

Required Courses:


Electives:


Upper division electives as necessary to reach 60 credits beyond the associate of science degree and to reach 45 credits of upper division course work.

Foundational Studies (9 credits):


Composition: upper division course requirement 3 credits

Ethics and Social Responsibility: 3 credits

Upper Division Integrative Electives: 3 credits in category #2 (category #1 satisfied by AET 330)

or Associate of Applied Science Degree Completion


Completion of an associate of applied science degree from a regionally accredited institution in an automotive program accredited by the National Automotive Technicians Education Foundation (NATEF). This degree completion option includes all course work for satisfying graduation requirements at Indiana State University. Bachelor of Science in Automotive Engineering Technology, Associate of Applied Science Transfer Option (minimum of 60 credits)

Required Courses:


Required Foundational Studies (additional 21 credits) (unless satisfied in course by course transfer


Composition: Upper division course requirement 3-6 credits (the latter if the student has not taken one of the prerequisites for the junior level composition course-e.g. ENG 105)

Literary Studies 3 credits

Fine and Performing Arts 3 credits

Historical Studies 3 credits

Global Perspectives and Cultural Diversity 3 credits

Ethics and Social Responsibility 3 credits

Upper Division Integrative Electives: 3 credits in category #2 (category #1 satisfied by AET 330)

Electives:


Upper division electives as necessary to reach 60 credits beyond the associate of applied science degree and to reach 45 credits of upper division course work.

Return to {$returnto_text} Return to: Programs